Chemical Engineering Approaches for Catalytic Reduction of CO₂

By Prof Chen Jingguang

Converting CO₂ to value-added chemicals and fuels is one of the most practical routes for reducing CO₂ emissions while fossil fuels continue to dominate the energy sector in the near future. In this talk we will present several routes in catalytic CO₂ conversion: (1) CO₂ hydrogenation by thermocatalysis, (2) CO₂ reduction by electrocatalysis, and (3) simultaneous upgrading of CO₂ and shale gas. We will use these examples to highlight the importance of combining kinetic studies, in situ characterization and density functional theory calculations for the mechanistic understanding of CO₂ conversion. We will also demonstrate proof-of-principle results of several promising catalytic reactions using tandem processes to convert CO₂ and light alkanes to syngas, olefins, aromatics and oxygenates.

Jingguang Chen is the Thayer Lindsley Professor of Chemical Engineering at Columbia University, with a joint appointment at Brookhaven National Laboratory. He is the co-author of 23 United States patents and 475 journal publications, and he is recognized as a Web of Science Highly Cited Researcher. He is currently the President of the North American Catalysis Society, the Director of the Synchrotron Catalysis Consortium, and an Associate Editor of ACS Catalysis. He received the George Olah Award on Hydrocarbon Chemistry from the American Chemical Society and the R.H. Wilhelm Award on Chemical Reaction Engineering from the American Institute of Chemical Engineers.